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Abstract We focus on a comparative study of three recently developed
nature-inspired optimization algorithms, including state transition algorithm,
harmony search and artificial bee colony. Their core mechanisms are introduced
and their similarities and differences are described. Then, a suit of 27 well-known
benchmark problems are used to investigate the performance of these algorithms
and finally we discuss their general applicability with respect to the structure of
optimization problems.
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1 Introduction

Existing natural phenomena, such as natural selection and survival of the fittest
(genetic algorithm), natural annealing process in metallurgy (simulated annealing),
foraging behavior of real ant colonies (ant colony optimization), and social
behavior of bird flocks and fish schools (particle swarm optimization) have
inspired researchers to develop algorithms for optimization problems. These nat-
ure-inspired algorithms have received considerable attention due to their strong
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adaptability and easy implementation. Inspired by the improvisation process of
musicians and foraging behavior of real honeybees, harmony search (HS) [1–3]
and artificial bee colony (ABC) [4, 5] have been proposed respectively in recent
few years. At the same time, in terms of the concepts of state and state transition, a
new heuristic random search algorithm named state transition algorithm (STA) has
been introduced in order to probe into classical and intelligent optimization
algorithms [6–9]. In this study, we focus on a comparative study of state transition
algorithm with harmony search and artificial bee colony in their standard versions.

2 Three Stochastic Algorithms

In this section, we give a brief description of the three stochastic algorithms with
respect to their mechanisms, and the similarities and differences are also discussed.

2.1 Harmony Search

In HS, there exist three possible choices to generate a new piece of music: (1)
select a note stored in harmony memory at a probability of HMCR (harmony
memory considerate rate); (2) adjust the pitch slightly at a probability of PAR
(pitch adjusting rate); (3) compose any pitch randomly within bounds. The pitch is
adjusted by

xnew ¼ xold þ ð2rand � 1Þ � b

where, rand is a random number from [0,1], and b is the pitch bandwidth.

2.2 Artificial Bee Colony

In ABC, the colony of artificial bees contains three groups of bees: (1) employed
bees, going to the food source visited previously; (2) onlookers, making decision
to choose a food source; (3) scouts, carrying out random search. A new position is
produced by

vij ¼ xij þ /ijðxij � xkjÞ

where, i is the index of ith food position, j is the jth component of a position, uij is
a random number in [-1,1], k is a different index from i, and j, k are created
randomly.

An artificial onlooker bee chooses a food source depending on a probability by
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pi ¼
fiti

PSN

n¼1
fitn

where, fiti is the fitness value of the position i, SN is the number of food sources.

2.3 State Transition Algorithm

The unified framework of STA is described as follows

xkþ1 ¼ Akxk þ Bkuk

ykþ1 ¼ f ðxkþ1Þ

�

where, Ak, Bk are state transition matrix, uk is the function of state xk and historical
states, and there are four special geometrical operators defined by

1. Rotation transformation

xkþ1 ¼ xk þ a
1

n xkk k2
Rrxk;

where, a is a positive constant, Rr is a random matrix with its entries from [-1,1].
2. Translation transformation

xkþ1 ¼ xk þ bRt
xk � xk�1

xk � xk�1k k2
;

where, b is a positive constant, Rt is a random variable from [0,1].
3. Expansion transformation

xkþ1 ¼ xk þ cRexk;

where, c is a positive constant, Re is a random diagonal matrix with its entries
obeying the standard norm distribution.

4. Axesion transformation

xkþ1 ¼ xk þ dRaxk

where, d is a positive constant, Ra is a random diagonal matrix with its entries
obeying the standard norm distribution and only one random position having
nonzero value.
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2.4 Similarities and Difference

There are two main similarities among the three algorithms in the discussed
versions: Firstly, a new solution is created randomly, and they are all stochastic
algorithms. Second, ‘‘greedy criterion’’ is adopted to evaluate a solution, and it is
different from simulated annealing, in which, a bad solution is accepted in
probability.

The differences between STA and other two algorithms are: (1) both HS and
ABC focus on updating each component of a solution, while STA treats a solution
in whole for update except the axesion transformation; (2) the comparing STA is
individual-based, while both HS and ABC are population-based; (3) the mutant
operators are different in three algorithms; (4) in HS, there is a probability in
choosing an update, while in STA, the updating procedures are determined; (5) in
ABC, choosing a food source depending on a probability associated with the
fitness, while in STA, a candidate solution with better fitness is preferred; (6) in
ABC, the fitness is standardized, while in STA, the fitness is based on objective
function.

3 Experimental Results

All these benchmark instances are taken from [10]. In our experiments, we use the
codes of standard HS and ABC from [11, 12], and the STA is from Zhou et al. [7].
The size of the population is 10, and the maximum iterations are 1e3, 2e3, 4e3,
1e4, 5e4, and 1e5 for n = 2, 3, 4, 10, (20, 24, 25) and 30, respectively. For each
benchmark instance, the initial population is the same for three algorithms at each
run, and 20 runs are performed for each algorithm. Statistics like mean, std
(standard deviation), and Wilcoxon rank sum test are used to evaluate algorithms.

3.1 Benchmark Instances

The details of the benchmark instances are given as follows.
Ackley function

f1ðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

x2
i

s !

� exp
1
n

Xn

i¼1

cosð2pxiÞ
 !

þ 20þ e; �15 � xi � 30
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Beale function

f2ðxÞ ¼ ð1:5� x1 þ x1x2Þ2 þ ð2:25� x1 þ x1x2
2Þ

2

þ ð2:625� x1 þ x1x3
2Þ

2; �4:5� xi� 4:5

Bohachevsky Function

f3ðxÞ ¼ x2
1 þ 2x2

2 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0:7; �100� xi� 100

Booth Function f4ðxÞ ¼ ðx1 þ 2x2 � 7Þ2 þ ð2x1 þ x2 � 5Þ2;�10� xi� 10

Branin Function

f5ðxÞ ¼ x2 �
5:1
4p2

x2
1 þ

5
p

x1 � 6

� �2

þ10 1� 1
8p

� �

cosðx1Þ þ 10; �5� x1� 10; 0� x2� 15

Colville Function

f6ðxÞ ¼ 100ðx2
1 � x2Þ2 þ ðx1 � 1Þ2 þ ðx3 � 1Þ2 þ 90ðx2

3 � x4Þ2

þ 10:1 ðx2 � 1Þ2 þ ðx4 � 1Þ2
� �

þ 19:8ðx2 � 1Þðx4 � 1Þ; �10� xi� 10

Dixon and Price Function f7ðxÞ ¼ ðx1 � 1Þ2 þ
Pn

i¼2
ið2x2

i � xi�1Þ2; �10� xi� 10

Easom Function f8ðxÞ ¼ � cosðx1Þ cosðx2Þ expð�ðx1 � pÞ2 � ðx2 � pÞ2Þ;
�100� xi � 100

Goldstein and Price Function

f9ðxÞ ¼ 1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 13x2
1 � 14x2 þ 6x1x2 þ 3x2

2Þ
� �

� 30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x2
1 � 48x2 � 36x1x2 þ 27x2

2Þ
� �

;

�2� xi� 2

Griewank Function f10ðxÞ ¼ 1
4;000

Pn

i¼1
x2

i �
Qn

i¼1
cos xiffi

i
p
�
�
�
�
�
�þ 1; �600� xi� 600

Hartmann Function f11ðxÞ ¼ �
P4

i¼1
ai exp �

P3

j¼1
Aijðxj � PijÞ2

" #

; 0\xj\1

where,

a ¼ ½1; 1:2; 3; 3:2�T ; A ¼

3:0 10 30
0:1 10 35
3:0 10 30
0:1 10 35

2

6
6
4

3

7
7
5; P ¼ 10�4

6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

2

6
6
4

3

7
7
5
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Hump Function f12ðxÞ ¼ 4x2
1 � 2:1x4

1 þ 1
3 x6

1 þ x1x2 � 4x2
2 þ 4x4

2; �5� xi� 5

Levy Function f13ðxÞ ¼ sin2ðpy1Þ þ
Pn�1

i¼1
ðyi � 1Þ2ð1þ 10 sin2ðpyi þ 1ÞÞ
h

þðyn � 1Þ2ð1þ 10 sin2ðpynÞÞ
i

yi ¼ 1þ xi � 1
4

; �10� xi� 10

Matyas Function f14ðxÞ ¼ 0:26 x2
1 þ x2

2

	 

� 0:48x1x2; �10� xi� 10

Michalewics Function f15ðxÞ ¼ �
P2

i¼1
sinðxiÞ sinðix2

i =pÞ
2m; m ¼ 10; 0� xi� p

Perm Functions f16ðxÞ ¼
Pn

k¼1

Pn

i¼1
ðik þ bÞ ðxi=iÞk � 1

� �� �2

; b ¼ 0:5; �n� xi� n

Powell Function f17ðxÞ ¼
Xn=4

i¼1

ðx4i�3 þ 10x4i�2Þ2 þ 5ðx4i�1 � x4iÞ2

þðx4i�2 � x4i�1Þ4 þ 10ðx4i�3 � x4iÞ4; �4� xi� 5

Power Sum Function f18ðxÞ ¼
Pn

k¼1

Pn

i¼1
xk

i

� �

� bk

� �2

; b ¼ ð8; 18; 44; 114Þ;

�4� xi� 5

Rastrigin Function f19ðxÞ ¼
Pn

i¼1
ðx2

i � 10 cosð2pxiÞ þ 10Þ; �5:12� xi� 5:12

Rosenbrock Function f20ðxÞ ¼
Pn

i¼1
100ðxiþ1 � x2

i Þ
2 þ ðxi � 1Þ2

� �
; �5� xi� 10

Schwefel Function f21ðxÞ ¼ 418:9829n�
Pn

i¼1
xi sin

ffiffiffiffiffiffi
xij j

p	 

; �500� xi� 500

Shekel Function f22ðxÞ ¼ �
Pm

j¼1

P4

i¼1
ðxi � CijÞ2 þ bj

� ��1

; m ¼ 10; 0� xi� 10

b ¼ 1
10
½1; 2; 2; 4; 4; 6; 3; 7; 5; 5�T ; C

¼

4:0 1:0 8:0 6:0 3:0 2:0 5:0 8:0 6:0 7:0

4:0 1:0 8:0 6:0 7:0 9:0 5:0 1:0 2:0 3:6

4:0 1:0 8:0 6:0 3:0 2:0 3:0 8:0 6:0 7:0

4:0 1:0 8:0 6:0 7:0 9:0 3:0 1:0 2:0 3:6

2

6
6
6
4

3

7
7
7
5

Shubert Function f23ðxÞ ¼
P5

i¼1
i cos ðiþ 1Þ � x1 þ i½ � �

P5

i¼1
i cos ðiþ 1Þ � x2½

þi�; �10� xi� 10

Sphere Function f24ðxÞ ¼
Pn

i¼1
x2

i ; �5:12� xi� 5:12
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Sum Squares Function f25ðxÞ ¼
Pn

i¼1
ix2

i ; �10� xi� 10

Trid Function f26ðxÞ ¼
Pn

i¼1
ðxi � 1Þ2 �

Pn

i¼2
xixi�1; �n2� xi� n2

ZakharovFunction f27ðxÞ ¼
Pn

i¼1
x2

i þ
Pn

i¼1
0:5ixi

� �2

þ
Pn

i¼1
0:5ixi

� �4

; �5� xi� 10.

3.2 Results and Discussion

Test results are listed in Table 1. We can find that the results of HS are always not
as good as that of ABC and STA, except for f11, f15 and f23. It seems that HS are
capable of solving problems without much interaction between variables, and the
solution accuracy and global search ability of HS are also not satisfactory.

Table 1 Results for three algorithms on benchmark instances

Functions HS ABC STA
mean ± std mean ± std mean ± std

f1(n = 2) 0.14 ± 0.57- 8.88E-16 ± 0 & 8.88E-16 ± 0
f2(n = 2) 0.35 ± 0.53- 3.61E-06 ± 1.38E-5- 4.31E-11 ± 4.91E-11
f3(n = 2) 0.73 ± 0.62- 0 ± 0 & 0 ± 0
f4(n = 2) 0.08 ± 0.14- 4.57E-17 ± 4.90E-17+ 4.80E-11 ± 3.99E-11
f5(n = 2) 0.39 ± 0.01- 0.39 ± 5.46E-16 & 0.39 ± 1.50E-16
f6(n = 4) 7.20 ± 19.98- 0.21 ± 0.14- 0.001 ± 0.002
f7(n = 25) 12.17 ± 5.19- 7.51E-15 ± 2.71E-15+ 0.60 ± 0.20
f8(n = 2) -0.43 ± 0.49- -0.9057 ± 0.27- -1.0 ± 1.31E-11
f9(n = 2) 11.48 ± 12.86- 3.002 ± 0.008- 3.00 ± 4.77E-9
f10(n = 2) 0.16 ± 0.14- 0 ± 0 & 0 ± 0
f11(n = 3) -3.86 ± 2.88E-8 & -3.86 ± 1.82E-15 & -3.86 ± 2.96E-10
f12(n = 2) 2.23E-5 ± 8.82E-5- 4.65E-8 ± 0 & 4.66E-8 ± 1.13E-10
f13(n = 30) 0.90 ± 0.22- 4.98E-16 ± 5.39E-17+ 3.84E-11 ± 4.80E-12
f14(n = 2) 0.05 ± 0.06- 4.27E-10 ± 1.75E-9- 1.97E-250 ± 0
f15(n = 2) -1.8013 ± 5.44E-5 & -1.8013 ± 6.83E-16 & -1.8013 ± 1.01E-10
f16(n = 4) 5.94 ± 9.22- 0.15 ± 0.14- 0.01 ± 0.03
f17(n = 24) 10.27 ± 5.54- 1.88E-4 ± 5.94E-5 & 1.13E-4 ± 2.36E-5
f18(n = 4) 0.29 ± 0.49- 0.02 ± 0.01- 4.33E-4 ± 5.02E-4
f19(n = 2) 0.09 ± 0.30- 0 ± 0 & 0 ± 0
f20(n = 2) 1.02 ± 1.49- 0.01 ± 0.01- 4.38E-8 ± 1.71E-7
f21(n = 2) 0.03 ± 0.16- 2.54E-5 ± 0- 2.54E-5 ± 1.48E-12
f22(n = 4) -5.61 ± 3.41- -10.53 ± 9.34E-5 & -10.53 ± 3.06E-10
f23(n = 2) -186.73 ± 5.09E-4 & -186.73 ± 3.57E-14 & -186.73 ± 3.28E-8
f24(n = 30) 0.72 ± 0.20- 5.08E-16 ± 5.69E-17- 0 ± 0
f25(n = 20) 0.69 ± 0.50- 2.58E-16 ± 3.72E-17- 0 ± 0
f26(n = 10) -78.37 ± 113.69- -210 ± 7.32E-7 & -210 ± 1.86E-10
f27(n = 2) 6.37E-4 ± 2.80E-3- 2.91E-18 ± 2.55E-18- 0 ± 0
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For ABC and STA, we can find their results are much more satisfactory, and
they are able to obtain the global solutions for the majority of the test problems. To
be more specific, we can find that ABC outperforms STA for f4, f7 and f13, and it
can gain higher precision than STA, especially for f7, which indicates that ABC are
more suitable for problems with strongly interacted structure. On the other hand,
for f2, f6, f8, f9, f14, f16, f18, f20, f24, f25 and f27, STA outperforms ABC in terms of
solution accuracy, which indicates STA has stronger local exploitation ability than
that of ABC.

Figure 1 gives the average fitness curve of Matyas function by the three
algorithms. We can find that STA is more capable of searching in depth.

4 Conclusion

In this paper, we investigate the mechanisms and performances of state transition
algorithm, harmony search and artificial bee colony. Similarities and differences of
the algorithms are mainly focused. A suit of unconstrained optimization problems
have been used to evaluate these algorithms. Experimental results show that both
state transition algorithm and artificial bee colony have better global search
capability and can achieve higher solution accuracy than harmony search, artificial
bee colony is more capable of solving problems with strongly interacted variables,
and state transition algorithm has the potential ability to search in depth.
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Fig. 1 The average fitness curve of Matyas function by HS, ABC and STA
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